Báo cáo toán học: "A MATRIX DYNAMICS APPROACH TO GOLOMB’S RECURSION"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: A MATRIX DYNAMICS APPROACH TO GOLOMB’S RECURSION. | A MATRIX DYNAMICS APPROACH TO GOLOMB S RECURSION Edward J. Barbeau John Chew and Stephen Tanny Department of Mathematics University of Toronto Toronto ON M5S 3G3 barbeau@ jjchew@ and tanny@ Submitted February 10 1997 Accepted July 14 1997 Abstract In an unpublished note Golomb proposed a family of strange recursions of metahbonacci type parametrized by k. Previously we showed that contrary to Golomb s conjecture for each k there are many increasing solutions and an explicit construction for multiple solutions was displayed. By reformulating our solution approach using matrix dynamics we extend these results to a characterization of the asymptotic behaviour of all solutions of the Golomb recursion. This matrix dynamics perspective is also used to construct what we believe is the hrst example of a nontrivial nonincreasing solution that is one that is not eventually increasing. Subject Number 05A11 Key Words metahbonacci recursion Golomb recursion matrix dynamics 1 the electronic journal of combinatorics 4 1997 R16 2 1. Introduction In 3 Golomb introduced the recursion b b n kn 2b n kn 1 with initial conditions b 1 1 and b 2 3 for k 1 and b 2 2 for k 1. Here k is a fixed positive integer parameter and n ranges over the positive integers. This recursion which Golomb describes as strange was suggested to him by Fraenkel 2 who shows that one solution is given by b n _np_ where p is the positive root of the equation x2 k 2 x k 0 . 2 In the particular case that k 1 p is equal to T the golden ratio which satisfies T2 1 T and T 0. The sequence b n is called the homogeneous Beatty sequence of p. See 3 where a considerably more general recursion that 1 is discussed based upon iterates of the floor function _np for any algebraic number p. Golomb noted that the solution b n of 1 was not unique but conjectured that it appears to be the only monotonically increasing solution 4 p14 . In 1 Barbeau and Tanny showed that the recursion 1

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.