Báo cáo toán học: "Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles. | Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles I. M. Wanless Department of Mathematics and Statistics University of Melbourne Parkville Vic 3052 Australia ianw@ Submitted November 16 1998 Accepted January 22 1999. AMS Classifications 05B15 05C70. A Latin square is pan-Hamiltonian if every pair of rows forms a single cycle. Such squares are related to perfect 1-factorisations of the complete bipartite graph. A square is atomic if every conjugate is pan-Hamiltonian. These squares are indivisible in a strong sense - they have no proper subrectangles. We give some existence results and a catalogue for small orders. In the process we identify all the perfect 1-factorisations of Kn n for n 9 and count the Latin squares of order 9 without proper subsquares. 1. Introduction For k n a k X n Latin rectangle is a k X n matrix of entries chosen from some set of symbols of cardinality n such that no symbol is duplicated within any row or any column. Typically we assume that the symbol set is 1 2 . ng. We use L k n for the set of k X n Latin rectangles. Elements of L n n are called Latin squares of order n. The symbol in row r column c of a Latin rectangle R is denoted by Rrc. A Latin square S is idempotent if Sii i for each i. If the symbol set of a Latin rectangle R is 1 2 . ng then each row r is the image of some permutation ơr of that set. That is Rri ơr i . Moreover each pair of rows r s defines a permutation by ơr s ơrơ ỵ. Naturally ơr s ơ g. Any of these permutations may be written as a product of disjoint cycles in the standard way. If this product consists of a single factor we call the permutation a full cycle permutation. A subrectangle of a Latin rectangle is a submatrix not necessarily consisting of adjacent entries which is itself a Latin rectangle. If it happens to be a Latin square it is called a subsquare. An a X b subrectangle of a k X n Latin rectangle is proper provided we have the strict .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.