Báo cáo toán học: " Coverings, heat kernels and spanning trees"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: Coverings, heat kernels and spanning trees. | Coverings heat kernels and spanning trees Fan Chung University of Pennsylvania Philadelphia Pennsylvania 19104 chung@ . Yau Harvard University Cambridge Massachusetts 02138 yau@ Submitted May 1 1998 Accepted December 12 1998. AMS Subject Classification 05C50 05Exx 35P05 58G99. Abstract We consider a graph G and a covering G of G and we study the relations of their eigenvalues and heat kernels. We evaluate the heat kernel for an infinite k-regular tree and we examine the heat kernels for general k-regular graphs. In particular we show that a k-regular graph on n vertices has at most 2 log n i k - 1 k 1 V o 1 kn log k V k2 - 2k k 2-1 spanning trees which is best possible within a constant factor. 1 Introduction We consider a weighted undirected graph G possibly with loops which has a vertex set V V G and a weight function w V X V IB satisfying w u v w v u and w u v 0. Research supported in part by NSF Grant No. DMS 98-01446 Research supported in part by NSF Grant No. DMS 95-04834 1 THE ELECTRONIC .JOURNAL OF COmBINATORICS 6 1999 R12 2 If w u v 0 then we say u v is an edge and u is adjacent to v. A simple graph is the special case where all the weights are 0 or 1 and w v v 0 for all v. In this paper by a graph we mean a weighted graph unless specihed. The degree dv of a vertex v is dehned to be dv 52 w u v . A graph is regular if all its degrees are the same. For a vertex v in G the neighborhood N v of v consists of all vertices adjacent to v. This paper is organized as follows In Section 2 we dehne a covering of a graph and give several examples. In Section 3 we give the dehnitions for the Laplacian eigenvalues and the heat kernel of a graph. In Section 4 we consider the relations between the eigenvalues of a graph and the eigenvalues of its covering. In particular we give a proof for determining the eigenvalues and their multiplicities of a strongly cover-regular graph G from the eigenfunctions of the smaller graph covered by .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.