Báo cáo toán học: "The Gr¨tzsch Theorem for the hypergraph of o maximal cliques"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: The Gr¨tzsch Theorem for the hypergraph of o maximal cliques. | The Grotzsch Theorem for the hypergraph of maximal cliques Bojan Mohar and Riste Skrekovski Department of Mathematics University of Ljubljana Jadranska 19 1111 Ljubljana Slovenia Submitted September 5 1998 Accepted June 7 1999. Mathematical Subject Classification 05C15 05C65. Abstract In this paper we extend the Grotzsch Theorem by proving that the clique hypergraph H G of every planar graph is 3-colorable. We also extend this result to list colorings by proving that H G is 4-choosable for every planar or projective planar graph G. Finally 4-choosability of H G is established for the class of locally planar graphs on arbitrary surfaces. 1 Introduction Let G be a graph. The hypergraph H H G with the same vertex set as G whose hyper edges are the maximal cliques of G is called the clique hypergraph of G. A k-coloring of H is a function c V H 1 . kg such that no edge of H is monochromatic . c e 2 for every e 2 E H . The Supported in part by the Ministry of Science and Technology of Slovenia Research Project J1-0502-0101-98. 1 THE ELECTRONIC .JOURNAL OF COmBINATORICS 6 1999 R26 2 minimal k such that H admits a k-coloring is called the chromatic number of H and is denoted by y H . The reader can hnd more about this kind of colorings in 2 5 . A k-list-assignment of G is a function L which assigns to each vertex v 2 V G a set L v called the list of v which has at least k elements. The elements of L v are called the admissible colors for v. An L-coloring of G or H G is a function c V G uvL v such that c v 2 L v for every v 2 V G and no edge of G or H G is monochromatic. A coloring of H G is strong if no 3-cycle of G is monochromatic. G or H G is strongly k-choosable if for every k-list-assignment L there exists a strong L-coloring of G or H G . If G is a triangle-free graph then H G G. Hence x H G y G . Grotzsch 4 see also 5 8 9 proved the following beautiful theorem. Theorem Grotzsch Every triangle-free planar .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.