Báo cáo toán học: "Zero Capacity Region of Multidimensional Run Length Constraints"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: Zero Capacity Region of Multidimensional Run Length Constraints. | Zero Capacity Region of Multidimensional Run Length Constraints Hisashi Ito Department of Information Science Toho University Chiba 274-8510 Japan his@ Akiko Kato Dept. of Mathematical Engineering and Information Physics University of Tokyo Tokyo 113-8656 Japan akiko@ Zsigmond Nagy Department of Electrical and Computer Engineering University of California San Diego CA 92093-0407 nagy@ Kenneth Zeger Department of Electrical and Computer Engineering University of California San Diego CA 92093-0407 zeger@ Submitted April 24 1999 Accepted September 1 1999. 1991 Mathematics Subject Classification 94A99 58F03. 0This work was supported in part by the National Science Foundation and by a JSPS Fellowship for Young Scientists. A portion of this work was presented in Japanese at the Research Institute for Mathematical Sciences Workshop RIMS Kokyuroku Kyoto University Japan January 1999. 1 THE ELECTRONIC .JOURNAL OF COMBINATORICS 6 1999 R33 2 Abstract For integers d and k satisfying 0 d k a binary sequence is said to satisfy a one-dimensional d k run length constraint if there are never more than k zeros in a row and if between any two ones there are at least d zeros. For n 1 the n-dimensional d k -constrained capacity is defined as log2 Cdk mi W2 . mn mim2 mn where N mz . . denotes the number of mi X m2 X X mn n-dimensional binary rectangular patterns that satisfy the one-dimensional d k run length constraint in the direction of every coordinate axis. It is proven for all n 2 d 1 and k d that cdnk 0 if and only if k d 1. Also it is proven for every d 0 and k d that limn TO cdnk 0 if and only if k 2d. THE ELECTRONIC .JOURNAL OF COMBINATORICS 6 1999 R33 3 1 Introduction A binary sequence is d k -constrained or runlength constrained if there are at most k consecutive zeros and between every two ones there are at least d consecutive zeros. An n-dimensional pattern of zeros and ones arranged in an m1 X m2

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.