Báo cáo toán học: "Note on Gy. Elekes’s conjectures concerning unavoidable patterns in proper colorings"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: Note on Gy. Elekes’s conjectures concerning unavoidable patterns in proper colorings. | Note on Gy. Elekes s conjectures concerning unavoidable patterns in proper colorings Vera Rosta Webster University Geneva 1293 Bellevue Switzerland rosta@ Submitted March 19 2000 Accepted May 2 2000. AMS Classification numbers 05C15 05C55 05C38 Abstract A counterexample is presented to Gy. Elekes s conjecture concerning the existence of long 2-colored paths in properly colored graphs. A modified version of the conjecture is given and its connections to a problem of Erdos - Gyarfas and to Szemeredi s theorem are examined. The coloring of the edges of a simple undirected graph is considered proper if adjacent edges have different colors. To solve some combinatorial geometry questions Elekes formulated the following conjectures Conjecture 1 2 Let the edges of the complete graph Kn be properly colored with cn colors c 0. If n is sufficiently large then it must contain a six cycle with opposite edges having the same color. Conjecture 2 3 If the edges of the complete bipartite graph K n n or the edges of a complete graph Kn are properly colored with cn colors where c 0 n n1 k c then there exists an alternating 2-colored path of length k. This last conjecture is closely related to the following well known theorem of Szemeredi Theorem 1 6 Any set A a1 a2 . ang c N whith an cn and n n2 k c contains an arithmetic sequence of length k. 1 THE ELECTRONIC .JOURNAL OF COMBINATORICS 7 2000 N3 2 Szemeredi s theorem would follow easily from the last conjecture Let G A1 A2 be a complete bipartite graph where A1 A2 are identical copies of A and the color of the edge x y is x y where x 2 A1. Then the edges of G are properly colored with 2cn colors. If Conjecture 2 were true with n n1 2k 2c an alternating 2 -colored path of length 2k would guarantee an arithmetic progression of size k. Here we give a coloring disproving the complete graph version of Conjecture 2 for k 3 which can be easily applied to the bipartite case. Example 1 Let 2m-1 n 2m for some m. Label the .

Bấm vào đây để xem trước nội dung
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.