Báo cáo toán học: "On the twin designs with the Ionin–type parameters"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: On the twin designs with the Ionin–type parameters. | On the twin designs with the Ionin-type parameters H. Kharaghani Department of Mathematics Computer Science University of Lethbridge Lethbridge Alberta T1K 3M4 Canada hadi@ Submitted July 31 1999 Accepted October 20 1999 Dedicated to Professor Reza Khosrovshahi on the occasion of his 60th birthday Keywords Symmetric design regular Hadamard matrix Bush-type Hadamard matrix design with Ionin-type parameters balanced generalized weighing matrix weighing matrix. MR Subject Code 05B05 Abstract Let 4n2 be the order of a Bush-type Hadamard matrix with q 2n 1 2 a prime power. It is shown that there is a weighing matrix W 4 qm qm-1 q 1 n2 4qmn2 which includes two symmetric designs with the Ionin-type parameters V 4 qm qm q 1 n2 K qm 2n2 n X qm n2 n for every positive integer m. Noting that Bush-type Hadamard matrices of order 16n2 exist for all n for which an Hadamard matrix of order 4n exist this provides a new class of symmetric designs. Thanks to Stephen Ney for proving me wrong on my first choice of the cyclic group by writing a program and applying the group. Wolfgang Holzmann as always was a great helper. 1 THE ELECTRONIC .JOURNAL OF COMBINATORICS 7 2000 R1 2 1 Introduction Recently Ionin 3 introduced an elegant method to use a very special class of regular Hadamard matrix of order 36 in a class of balanced generalized weighing matrices to construct a large class of symmetric designs. The key to his construction is the existence of a class of balanced generalized weighing matrices BGW qm qm-1 q 1 qm qm qm 1 over a cyclic group of order t where q is a prime power m is a positive integer and t is a divisor of q 1. A balanced generalized weighing matrix BGW V K X over a group G is a matrix W Wj of order V with wij 2 G u 0 such that each row and column of W has K non-zero entries and for each k l the multiset wkjw-j1 1 j v Wkj 0 wlj 0 contains X G copies of every element of G. For his construction Ionin starts with what he calls a starting regular Hadamard .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.