Báo cáo toán học: "A note on the number of (k, )-sum-free sets"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: A note on the number of (k, )-sum-free sets. | A note on the number of k -sum-free sets Tomasz Schoen Mathematisches Seminar Universitat zu Kiel Ludewig-Meyn-Str. 4 24098 Kiel Germany tos@ and Department of Discrete Mathematics Adam Mickiewicz University Poznan Poland Abstract A set A c N is k -sum-free for k 2 N k if it contains no solutions to the equation X1 - xk y1 - y . Let p p k be the smallest natural number not dividing k and let r rn 0 r p be such that r n mod p . The main result of this note says that if k is small in terms of p then the number of k -sum-free subsets of 1 n is equal to p r p o 1 2Ln J where r x denotes the number of positive integers m r relatively prime to x and x x x . Submitted February 15 1999 Accepted May 23 2000. 1991 Mathematics Subject Classification 11B75 11P99. A set A of positive integers is k -sum-free for k Ế 2 N k if there are no solutions to the equation X1 xk y yt in A. Denote by SFn the number of k -sum-free subsets of 1 n . Since the set of 1 THE ELECTRONIC .JOURNAL OF COMBINATORICS 7 2000 R30 2 odd numbers is 2 1 -sum-free we have SFn 1 2b n 1 2C. In fact Erdos and Cameron 6 conjectured SFn1 O 2n 2 . This conjecture is still open and the best upper bounds for SFn 1 given independently by Alon 1 and Calkin 3 say that for 1 SFỊ ự SFn 1 O 2n 2 o n . For 3 this bound was recently improved by Bilu 2 who proved that in this case SFn 1 1 o 1 2L n 1 2J. The case of k being much larger than was treated by Calkin and Taylor 4 . They showed that for some constant ck the number of k 1 -sum-free subsets of 1 n is at most ck2 k n provided k 3. Furthermore Calkin and Thomson proved 5 that for every k and with k 4 1 SFnk Ck2 k n k. In order to study the behaviour of SFn i let us observe first that there are two natural examples of large k -sum-free subsets of the interval 1 n n k 1 . n SF I t max 2n p- and m 2 1 2 . n m r mod p where gcd r p 1 and p p k min s 2 N s does not divide k . Thus 2Ĩ k . n k In this note we study the case k so that 2 p- 2d k- n k and we

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.