Báo cáo toán học: " Symmetric Sum-Free Partitions and Lower Bounds for Schur Numbers"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: Symmetric Sum-Free Partitions and Lower Bounds for Schur Numbers. | Symmetric Sum-Free Partitions and Lower Bounds for Schur Numbers Harold Fredricksen Naval Postgraduate School Department of Mathematics Monterey CA 93943 USA halF@ Melvin M. Sweet Institute for Defense Analyses Center for Communications Research 4320 Westerra Court San Diego CA 92121 USA sweet@ Submitted May 9 2000 Accepted May 18 2000 Abstract We give new lower bounds for the Schur numbers S 6 and S 7 . This will imply new lower bounds for the Multicolor Ramsey Numbers R6 3 and R7 3 . We also make several observations concerning symmetric sum-free partitions into 5 sets. Introduction A set of integers is said to be sum-free if for all i and j i in the set the sum i j is not in the set. The Schur number S k is defined to be the maximum integer n for which the interval 1 n can be partitioned into k sum-free sets. 1 I. Schur 7 proved that S k is finite and that S k 3S k - 1 1 . In the framework of Ramsey theory Schur s proof yields the inequality S k Rk 3 - 2 1 2 where Rk n denotes the k-color Ramsey number defined to be the smallest integer such that any k-color edge coloring of the complete graph on Rk n vertices has at least one complete subgraph all of whose edges have the same color. 1Some authors define S k to be the smallest n for which there are no sum-free partitions into k sets. 1 THE ELECTRONIC JOURNAL OF COMBINATORICS 7 2000 R32 2 It is easily verified that S 1 1 S 2 4 and S 3 13 and . Baumert 1 showed in 1961 with the aid of a computer that S 4 44. The best known bounds for S 5 are 160 S 5 315 3 The first inequality in 3 is due to G. Exoo 4 and the second follows from 2 and the bounds for R5 3 given in S. Radziszowski s survey paper 6 . For earlier work on lower bounds for S k see H. Fredricksen 5 and A. Beutelspacher and W. Brestovansky 2 . The best previously known lower bound S 6 481 for S 6 follows from 1 . At the end of this note we list constructions that show S 6 536 S 7 1680. Using 2 we obtain the following lower bounds

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.