Báo cáo toán học: " A BINOMIAL COEFFICIENT IDENTITY ASSOCIATED TO A CONJECTURE OF BEUKERS"

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: A BINOMIAL COEFFICIENT IDENTITY ASSOCIATED TO A CONJECTURE OF BEUKERS. | THE ELECTRONIC JOURNAL OF COMBINATORICS 5 1998 R10 A BINOMIAL COEFFICIENT IDENTITY ASSOCIATED TO A CONJECTURE OF BEUKERS Scott Ahlgren Shalosh B. Ekhad Ken Ono and Doron Zeilberger Abstract. Using the WZ method a binomial coefficient identity is proved. This identity is noteworthy since its truth is known to imply a conjecture of Beukers. Received January 28 1998 Accepted February 1 1998 If n is a positive integer then let A n X a k 0 k k 2 and define integers a n by XX a n qn q ỊỊ 1 - q2n 4 1 - q4n 4 q - 4q3 - 2q5 24q7 - 1 Beukers conjectured that if p is an odd prime then 1 2 a p mod p2 . In A-O it is shown that 1 is implied by the truth of the following identity. Theorem. If n is a positive integer then n 2 2 n k n-k k ỷ kC U Y1 ỳ1 - 2 ỳ 1 0. fci k 2k ị Ị i 2 1 í f if Remark. This identity is easily verified using the WZ method in a generalized form Z that applies when the summand is a hypergeometric term times a WZ potential function. It holds for all positive n since it holds for n 1 2 3 check and since the sequence defined by the sum satisfies a certain homog. third order linear recurrence equation. To find the recurrence and its proof download the Maple package EKHAD and the Maple program zeilWZP from http zeilberg . Calling the quantity inside the braces c n k compute the WZ pair F G where F c n k 1 - c n k and G c n 1 k - c n k . Go into Maple and type read zeilWZP zeilWZP k n k 2 k 4 n-k 2 F G k n N References A-O S. Ahlgren and K. Ono A Gaussian hypergeometric series evaluation and Apery number congruences in preparation . B F. Beukers Another congruence for Apery numbers J. Number Th. 25 1987 201-210. Z D. Zeilberger Closed Form pun intended Contemporary Mathematics 143 1993 579-607. Department of Mathematics Penn State University University Park Pennsylvania 16802 E-mail address ahlgren@ Department of Mathematics Temple University Philadelphia Pennsylvania 19122 E-mail address ekhad@ http .

Bấm vào đây để xem trước nội dung
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.