Báo cáo toán học: "Maximising the permanent of (0,1)-matrices and the number of extensions of Latin rectangles"

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: Maximising the permanent of (0,1)-matrices and the number of extensions of Latin rectangles. | Maximising the permanent of 0 1 -matrices and the number of extensions of Latin rectangles B. D. McKay and I. M. Wanless Department of Computer Science Australian National University Canberra ACT 0200 Australia bdm@ imw@ Submitted February 18 1997 Accepted March 15 1997 Received in final form February 8 1998. AMS Classifications 15A15 05C70 05B15. Let k 2 m 5 and n mk be integers. By finding bounds for certain rook polynomials we identify the k X n Latin rectangles with the most extensions to k 1 X n Latin rectangles. Equivalently we find the n k -regular subgraphs of Kn n which have the greatest number of perfect matchings and the 0 1 -matrices with exactly k zeroes in every row and column which maximise the permanent. Without the restriction on n being a multiple of k we solve the above problem and the corresponding minimisation problem for k 2. We also provide some computational results for small values of n and k. Our results partially settle two open problems of Minc and conjectures by Merriell and Godsil and McKay. 1. The problem Let k and n be positive integers with k n. A k X n Latin rectangle is a k X n matrix of entries from 1 2 . ng such that no entry is duplicated within any row or any column. We use L k n for the set of k X n Latin rectangles. For R 2 L k n define E R to be the number of R0 2 L k 1 n such that the first k rows of R0 are identical to the corresponding rows of R. We say that E R is the number of extensions of R. We call R1 2 L k n a maximising rectangle if E R1 E R for every R 2 L k n . We define Mk n E R1 for a maximising R1. Similarly we call R2 2 L k n a minimising rectangle if E R2 E R for every R 2 L k n and define mk n E R2 for a minimising R2. We are interested in identifying maximising and minimising rectangles and in finding estimates for Mk n and mk n. In particular we concentrate on maximising rectangles in the case when n mk for some integer m. The problem has at least two other guises which are .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.