Báo cáo toán học: "Multi-statistic enumeration of two-stack sortable permutations"

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: Multi-statistic enumeration of two-stack sortable permutations. | Multi-statistic enumeration of two-stack sortable permutations Mireille Bousquet-Melou LaBRI Université Bordeaux 1 351 cours de la Libération 33405 Talence Cedex FRANCE bousquet@ Submitted October 1 1997. Accepted April 1 1998 Abstract Using Zeilberger s factorization of two-stack-sortable permutations we write a functional equation of a strange sort that defines their generating function according to five statistics length number of descents number of right-to-left and left-to-right maxima and a fifth statistic that is closely linked to the factorization. Then we show how one can translate this functional equation into a polynomial one. We thus prove that our five-variable generating function for two-stack-sortable permutations is algebraic of degree 20. 1 Introduction The aim of this paper is twofold. Our first intention is to draw attention on the factorization of two-stack-sortable permutations described by Zeilberger in 22 . Among other advantages this factorization preserves many standard statistics defined on permutations and hence constitutes an efficient first step for their enumeration. We thus obtain a functional equation of a strange kind that defines a five-variable generating function for these permutations see Eq. 1 . Our second point is to show how one can solve such an equation or more precisely convert it into a polynomial one in particular we prove that the generating function for two-stack-sortable permutations counted according to the length number of descents number of right-to-left and left-to-right maxima is algebraic of degree 10. In passing we translate some of our results in terms of non-separable maps since two sophisticated bijections have been described between these maps and two-stack-sortable permutations 9 8 14 . We believe that our method can be applied to or at least inspire the solution of other functional equations having similar features. Let us mention that our first point celebrating Zeilberger s .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.