Báo cáo toán học: " A Note on the Asymptotics and Computational Complexity of Graph Distinguishability"

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: A Note on the Asymptotics and Computational Complexity of Graph Distinguishability. | A Note on the Asymptotics and Computational Complexity of Graph Distinguishability Alexander Russell acr@ Department of Computer Science University of Texas at Austin AuStin TX 78712 Ravi Sundaram koods@ Delta Global Trading 141 Tremont Street 12th Floor Boston MA 02111 Submitted February 2 1998 Accepted March 24 1998 Abstract A graph G is said to be -distinguishable if there is a d-coloring of G which no non-trivial automorphism preserves. That is 3y G 1 . dg 8Á 2 Aut G idg 9v ỵ v x Á v . It was conjectured that if G Aut G and the Aut G action on G has no singleton orbits then G is 2-distinguishable. We give an example where this fails. We partially repair the conjecture by showing that when enough motion occurs the distinguishing number does indeed decay. Specifically defining m G miiM 1 v 2 G Á v vg peAut G d id we show that when m G 2log2 Aut G G is indeed 2-distinguishable. In general we show that if m G lnd 2ln Aut G then G is d-distinguishable. There has been considerable interest in the computational complexity of the d-distinguishability problem. Specifically there has been much musing on the computational complexity of the language G d G is d-distinguishableg. We show that this language lies in AM c P nP. We use this to conclude that if Dist is coNP-hard then the polynomial hierarchy collapses. AMS Classification Primary 05C25 Secondary 68Q15. the electronic journal of combinatorics 5 1998 R23 2 1 Introduction An undirected graph G is -distinguishable if there is a d coloring of G which no non-trivial automorphism preserves. Formally we write 3y G 1 . d 8Á 2 Aut G id 3v x v X Á v where Aut G denotes the collection of automorphisms of the graph G and id denotes the identity map. One says that such a coloring destroys the symmetries of G. Every graph G is then G -distinguishable and a graph is 1-distinguishable exactly when it is rigid . Aut G 1. The smallest d for which G is d-distinguishable is dubbed the distinguishing .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.