Báo cáo toán học: "Counting Simplexes in R 3"

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: Counting Simplexes in R 3. | Counting Simplexes in R3 Claude Laflamme Department of Mathematics and Statistics University of Calgary Calgary Alberta Canada T2N 1N4 email laf@ István Szalkaiy Department of Mathematics and Computer Science University of Veszprám H-8201 Veszprám Hungary email szalkai@ szalkai@ Submitted September 26 1997 Accepted January 22 1998. AMS Subject Classification 05D99 05B35. Abstract A finite set of vectors S c ift is called a simplex iff S is linearly dependent but all its proper subsets are independent. This concept arises in particular from stoichiometry. We are interested in this paper in the number of simplexes contained in some H c ift which we denote by simp H . This investigation is particularly interesting for H spanning K and containing no collinear vectors. Our main result shows that for any H c K3 of fixed size not equal to 3 4 or 7 and such that H spans K3 and contains no collinear vectors simp H is minimal if and only if H is contained in two planes intersecting in H and one of which is of size exactly 3. The minimal configurations for H 3 4 7 are also completely described. The general problem for K remains open. The research of the first author was partially supported by NSERC of Canada. yThe research of the second author was partially supported by the Fund Peregrinatio I of MOL Co. Hungary Grant no. 3 1994. 1 THE ELECTRONIC .JOURNAL OF COmBINATORICS 5 1998 R40 1 Introduction 2 Simplexes are used for example in stoichiometry when hnding minimal reactions and mechanisms or for hnding dimensionless groups in dimensional analysis see 3 . To explain the notion of minimal reaction let the chemical species A1 A2 . An consist of elements E1 E2 . Em as Aj J2 1 ai j Ei ai j e N for j 1 2 . n. Writing Aj for the vector a1 j a2 j . amj T we know that there might exists a chemical reaction between the species Aj j e Sg for any S c 1 2 . ng if and only if the homogeneous linear equation X X Aj 0 1 j2S has a non

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.