Báo cáo toán học: "On the number of perfect matchings and Hamilton cycles in -regular non-bipartite graphs"

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: On the number of perfect matchings and Hamilton cycles in -regular non-bipartite graphs. | On the number of perfect matchings and Hamilton cycles in c-regular non-bipartite graphs Alan Frieze Department of Mathematical Sciences Carnegie Mellon University Pittsburgh PA15213 USA alan@ Submitted July 4 2000 Accepted November 19 2000 Abstract A graph G V E on n vertices is super e-regular if i all vertices have degree in the range d e n d e n dn being the average degree and ii for every pair of disjoint sets S T c V S TI en e S T is in the range d e S TI d e S T . We show that the number of perfect matchings lies in the range d 2ep n d 2ep nr where V n and the number of Hamilton cycles lies in the range d 2e nn d 2e nn . 1 Introduction Let G V E be a graph with V n. Let 0 d 1 and c 0 be constants independent of n where c is assumed to be small compared with d. We assume that the density of G is d . E n d. Suppose that the following two conditions hold If dG denotes vertex degree in G then d c n dG v d c n for all v E V. 1 Supported in part by NSF Grant CCR9818411 Mathematics Subject Classification 1991 primary 05C50 05C70 secondary 05C80 1 THE ELECTRONIC .JOURNAL OF COMBINATORICS 7 2000 R57 2 If for S T c V S n T we let e S T denote the number of edges of G with one end in S and the other in T and d S T s Tj then d S T - d 6 for all S T c V S n T SI T en. 2 A graph satisfying 1 2 said to be super e-regular. We assume that n 2u is even. Let m G denote the number of perfect matchings in G and let h G denote the number of Hamilton cycles in G. In this paper we prove Theorem 1 If 6 is sufficiently small and n is sufficiently large then a n n d - 2e ÃÃ m G d 2e ỹ ỹ. b d - 2e nn h G d 2e nn . In both cases the bounds are close to the expected number of in the random graph Gn d- The results here are strongly related to the result of Alon Rodl and Rucinski 2 . They considered bipartite graphs H with vertex partition A B where A B n. Assuming 1 and 2 for S c A and T c B they proved Theorem 2 2 d 2e nn m G d 2e nn . Michael Krivelevich has made .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.