Báo cáo toán học: "Asymptotic Bounds for Bipartite Ramsey Numbers"

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: Asymptotic Bounds for Bipartite Ramsey Numbers. | Asymptotic Bounds for Bipartite Ramsey Numbers Yair Caro Department of Mathematics University of Haifa - Oranim Tivon 36006 Israel ya_caro@ Cecil Rousseau Department of Mathematical Sciences The University of Memphis Memphis TN 38152-3240 ccrousse@ Submitted July 11 2000 Accepted February 7 2001. MR Subject Classifications 05C55 05C35 Abstract The bipartite Ramsey number b m n is the smallest positive integer r such that every red green coloring of the edges of Kr r contains either a red Km m or a green Kn n. We obtain asymptotic bounds for b m n for m 2 fixed and n 1. 1 Introduction Recent exact results for bipartite Ramsey numbers 4 have rekindled interest in this subject. The bipartite Ramsey number b m n is the smallest integer r such that every red green coloring of the edges of Kr r contains either a red Km m or a green Kn n. In early work on the subject 1 Beineke and Schwenk proved that b 2 2 5 and b 3 3 17. In 4 Hattingh and Henning prove that b 2 3 9 and b 2 4 14. The following variation was considered by Beineke and Schwenk 1 and also by Irving 5 for 1 m n the bipartite Ramsey number R m n is the smallest integer r such that every red green coloring of the edges of Kr r contains a monochromatic Km n. Irving found that R 2 n 4n 3 with equality if n is odd and there is Hadamard matrix of order 2 n 1 . The bound R m n 2m n 1 1 was proved by Thomason in 7 . Note that b m m R m m . In this note we obtain asymptotic bounds for b m n with m fixed and n 00. 2 The Main Result Theorem 1. Let m 2 be fixed. Then there are constants A and B such that m 1 2 m a - b m n - i n 1. log n log n THE ELECTRONIC JOURNAL OF COMBINATORICS 8 2001 R17 1 Specifically these bounds hold with A 1 e m 1 m m2 and B 1 m1 m 1 where e 0 is arbitrary. Proof. The upper bound is based on well-known results for the Zarankiewicz function. Let z r s denote the maximum number of edges that a subgraph of Krr can have if it does not contain KS S as a subgraph. We use the .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.