Báo cáo toán học: "Values of Domination Numbers of the Queen’s Graph"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: Values of Domination Numbers of the Queen’s Graph. | Values of Domination Numbers of the Queen s Graph Patric R. J. Ostergảrd Department of Computer Science and Engineering Helsinki University of Technology . Box 5400 02015 HUT Finland William D. Weakley Department of Mathematical Sciences Indiana University - Purdue University Fort Wayne Fort Wayne Indiana 46805 weakley@ Submitted November 7 2000 Accepted March 26 2001. MR Subject Classifications 05C69 68R05 Abstract The queen s graph Qn has the squares of the n X n chessboard as its vertices two squares are adjacent if they are in the same row column or diagonal. Let c Qn and i Qn be the minimum sizes of a dominating set and an independent dominating set of Qn respectively. Recent results the Parallelogram Law and a search algorithm adapted from Knuth are used to find dominating sets. New values and bounds A Y Qn n 2 is shown for 17 values of n in particular the set of values for which the conjecture Y Q4k 1 2k 1 is known to hold is extended to k 32 B i Qn n 2 is shown for 11 values of n including 5 of those from A C One or both of Y Qn and i Qn is shown to lie in n 2 n 2 1 for 85 values of n distinct from those in A and B . Combined with previously published work these results imply that for n 120 each of Y Qn and i Qn is either known or known to have one of two values. Also the general bounds y Qn 69n 133 0 1 and i Qn 61n 111 0 1 are established. Keywords dominating set queen domination queen s graph. Supported by the Academy of Finland. THE ELECTRONIC JOURNAL OF COMBINATORICS 8 2001 R29 1 1 Introduction The queen s graph Qn has the squares of the n X n chessboard as its vertices two squares are adjacent if they are in the same row column or diagonal. A set D of squares of Qn is a dominating set for Qn if every square of Qn is either in D or adjacent to a square in D. If no two squares of a set I are adjacent then I is an independent set. Let Y Qn denote the minimum size of a dominating set for Qn a dominating set of this size .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.