Báo cáo toán học: "omputation of the vertex Folkman numbers F (2, 2, 2, 4; 6) and F (2, 3, 4; 6)"

CTuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: omputation of the vertex Folkman numbers F (2, 2, 2, 4; 6) and F (2, 3, 4; 6). | Computation of the vertex Folkman numbers F 2 2 2 4 6 and F 2 3 4 6 Evgeni Nedialkov Institute of Mathematics and Informatics Bulgarian Academy of Sciences MOI 8 Acad. G. Bonchev Str. 1113 Sofia BULGARIA nedialkov@ Nedyalko Nenov Faculty of Mathematics and Informatics Sofia University 5 James Baurchier str. Sofia BULGARIA nenov@ Submitted August 30 2001 Accepted February 26 2002. MR Subject Classifications 05C55 Abstract In this note we show that the exact value of the vertex Folkman numbers F 2 2 2 4 6 and F 2 3 4 6 is 14. 1 Notations We consider only finite non-oriented graphs without loops and multiple edges. The vertex set and the edge set of a graph G will be denoted by V G and E G respectively. We call p-clique of G any set of p vertices each two of which are adjacent. The largest natural number p such that the graph G contains a p-clique is denoted by cl G the clique number of G . A set of vertices of a graph G is said to be independent if every two of them are not adjacent. The cardinality of any largest independent set of vertices in G is denoted by a G the independence number of G . If W c V G then G W is the subgraph of G induced by W and G W is the subgraph induced by V G W. We shall use also the following notation G - the complement of graph G Kn - complete graph of n vertices Cn - simple cycle of n vertices N v - the set of all vertices adjacent to v THE ELECTRONIC JOURNAL OF COMBINATORICS 9 2002 R9 1 ỵ G - the chromatic number of G Kn Cm m n - the graph obtained from Kn by deleting all edges of some cycle Cm. Let G1 and G2 be two graphs without common vertices. We denote by G1 G2 the graph G for which V G V G1 u V G2 and E G E G1 u EG u E where E x y x 2 V G1 y 2 V G2 . 2 Vertex Folkman numbers. Definition 1. Let G be a graph and let a1 . ar be positive integers r 2. An r-coloring V G Vi u. u Vr Vi n Vj 0 i j of the vertices of G is said to be a1 . . . ar -free if for all i 2 1 . r the graph G does not contain a .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.