Báo cáo toán học: "Graph Color Extensions: When Hadwiger’s Conjecture and Embeddings Help"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: Graph Color Extensions: When Hadwiger’s Conjecture and Embeddings Help | Graph Color Extensions When Hadwiger s Conjecture and Embeddings Help Michael O. Albertson Department of Mathematics Smith College Northampton MA 01063 USA albertson@ Joan P. Hutchinson Department of Mathematics and Computer Science Macalester College St. Paul MN 55105 USA hutchinson@ Submitted April 29 2002 Accepted September 12 2002. MR Subject Classifications 05C15 05C10 Abstract Suppose G is r-colorable and P c V G is such that the components of G P are far apart. We show that any r s -coloring of G P in which each component is s-colored extends to an r s -coloring of G. If G does not contract to K5 or is planar and s 2 then any r s 1 -coloring of P in which each component is s-colored extends to an r s 1 -coloring of G. This result uses the Four Color Theorem and its equivalence to Hadwiger s Conjecture for k 5. For s 2 this provides an affirmative answer to a question of Thomassen. Similar results hold for coloring arbitrary graphs embedded in both orientable and non-orientable surfaces. 1 Introduction Suppose G is an r-colorable graph and P c V V G . One naturally asks if an r-coloring of G P extends to a t-coloring of G where r t. This question is NP-complete even with severe restrictions on G. Its complexity has been well studied for a survey see 24 . Several years ago Thomassen asked if a planarity assumption and a distance constraint on P would help. Question 1 21 Suppose G is a planar graph and P c V is such that the distance between any two vertices in P is at least 100. Can a 5-coloring of P be extended to a 5-coloring of G THE ELECTRONIC JOURNAL OF COMBINATORICS 9 2002 R37 1 The answer to Thomassen s question is yes but the result does not require any topology- Theorem 1 1 If x G r and the distance between any two vertices in P is at least 4 then any r 1 -coloring of P extends to an r 1 -coloring of all of G. If x G r there is no similar extension theorem with r colors even if G is planar and r 4 1 . In response to Theorem 1 .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.