Báo cáo toán học: "On k-Ordered Bipartite Graphs"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: On k-Ordered Bipartite Graphs | On k-Ordered Bipartite Graphs Jill R. Faudree University of Alaska Fairbanks Fairbanks AK 99775 ffjrf@ Florian Pfender Emory University Atlanta GA 30322 fpfende@ Ronald J. Gould Emory University Atlanta GA 30322 rg@ Allison Wolf College of Computing Georgia Institute of Technology Atlanta GA 30332 awolf@ Submitted Oct 30 2001 Accepted Mar 26 2003 Published Apr 15 2003 MSC Subject Classifications 05C35 05C45 Abstract In 1997 Ng and Schultz introduced the idea of cycle orderability. For a positive integer k a graph G is k-ordered if for every ordered sequence of k vertices there is a cycle that encounters the vertices of the sequence in the given order. If the cycle is also a hamiltonian cycle then G is said to be k-ordered hamiltonian. We give minimum degree conditions and sum of degree conditions for nonadjacent vertices that imply a balanced bipartite graph to be k-ordered hamiltonian. For example let G be a balanced bipartite graph on 2n vertices n sufficiently large. We show that for any positive integer k if the minimum degree of G is at least 2n k 1 4 then G is k-ordered hamiltonian. 1 Introduction Over the years hamiltonian graphs have been widely studied. A variety of related properties have also been considered. Some of the properties are weaker for example traceability in graphs while others are stronger for example hamiltonian connectedness. Recently a new strong hamiltonian property was introduced in 3 . We say a graph G on n vertices n 3 is k-ordered for an integer k 1 k n if for every sequence S x1 x2 . xk of k distinct vertices in G there exists a cycle that contains all the vertices of S in the designated order. A graph is k-ordered hamiltonian if for every sequence S of k vertices there exists a hamiltonian cycle which encounters the vertices in S in the designated order. We will always let S xi x2 . xk denote the ordered k-set. If we say a cycle C contains S we mean C contains S in the .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.