Báo cáo toán học: "How many square occurrences must a binary sequence contain?"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: How many square occurrences must a binary sequence contain? | How many square occurrences must a binary sequence contain Gregory Kucherov Pascal Ochem Michael Rao Submitted Dec 3 2002 Accepted Dec 15 2002 Published Apr 15 2003 Abstract Every binary word with at least four letters contains a square. A. Fraenkel and J. Simpson showed that three distinct squares are necessary and sufficient to construct an infinite binary word. We study the following complementary question how many square occurrences must a binary word contain We show that this quantity is in the limit a constant fraction of the word length and prove that this constant is . 1 Introduction Infinite words avoiding repetitions is a classical area in word combinatorics 2 . A famous result of 9 10 see also 1 is that squares subwords of the form uu for a nonempty u can be avoided on a ternary alphabet and cubes subwords uuu on a binary alphabet. Different generalizations of the Thue results have been studied recently. One direction is related to considering fractional exponents. Thue showed that on the binary alphabet a strongly cube-free infinite word can be constructed . a word that does not contain a subword uua where a is the first letter of u. Putting this result in terms of fractional exp onents there exists an infinite binary word that does not contain a subword of exponent 2 E for any E 0. 2 is trivially a tight bound as any binary word longer than three letters contains a square. Generalizing this to the ternary alphabet F. Dejean 4 showed that any exponent bigger than 7 4 can be avoided using three letters and this bound is tight. These results have been generalized to larger alphabets and on the other hand to the abelian case LORIA INRIA-Lorraine 615 rue du Jardin Botanique . 101 54602 Villers-les-Nancy France tLaboratoire Bordelais de Recherche en Informatique 351 cours de la Libration 33405 Talence Cedex France ochem@ lUniversite de Metz Laboratoire d Informatique Theorique et Appliquee 57045 Metz .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.