Báo cáo toán học: "A Discontinuity in the Distribution of Fixed Point Sums"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: A Discontinuity in the Distribution of Fixed Point Sums | A Discontinuity in the Distribution of Fixed Point Sums Edward A. Bender Department of Mathematics University of California San Diego La Jolla CA 92091 ebender@ E. Rodney Canfield Department of Computer Science University of Georgia Athens GA 30602 erc@ L. Bruce Richmond Department of Combinatorics and Optimization University of Waterloo Waterloo Ontario CANADA N2L 3G1 lbrichmond@ Herbert S. Wilf Department of Mathematics University of Pennsylvania Philadelphia PA 19104-6395 wilf@ AMS Subject Classification 05A17 05A20 05A16 11P81 Submitted Oct 19 2002 Accepted Mar 29 2003 Published Apr 23 2003 THE ELECTRONIC JOURNAL OF COMBINATORICS 10 2003 R15 1 Abstract The quantity f n r defined as the number of permutations of the set n 1 2 . .n whose fixed points sum to r shows a sharp discontinuity in the neighborhood of r n. We explain this discontinuity and study the possible existence of other discontinuities in f n r for permutations. We generalize our results to other families of structures that exhibit the same kind of discontinuities by studying f n r when fixed points is replaced by components of size 1 in a suitable graph of the structure. Among the objects considered are permutations all functions and set partitions. 1 Introduction Let f n r denote the number of permutations of n 1 2 . n the sum of whose fixed points is r. For example when n 3 we find the values r 0 12 3 6 f 3 r 2 1111 Here is the graph of f 15 r The plot shows an interesting steep drop from r n to r n 1 and this paper arose in providing a quantification of the observed plunge. We think that this problem is a nice example of an innocent-looking asymptotic enumerative situation in which thoughts of THE ELECTRONIC JOURNAL OF COMBINATORICS 10 2003 R15 2 discontinuities might be far from the mind of an investigator yet they materialize in an interesting and important way. A quick explanation for the discontinuity is as follows about 74 of permutations have .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.