Báo cáo toán học: "The q-Binomial Theorem and two Symmetric q-Identities"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: The q-Binomial Theorem and two Symmetric q-Identities | The q-Binomial Theorem and two Symmetric q -Identities Victor J. W. Guo Center for Combinatorics LPMC Nankai University Tianjin 300071 People s Republic of China jwguo@ Submitted Jun 30 2003 Accepted Sep 4 2003 Published Sep 12 2003 MR Subject Classifications 05A19 05A17 Abstract We notice two symmetric -identities which are special cases of the transformations of 2 1 series in Gasper and Rahman s book Basic Hypergeometric Series Cambridge University Press 1990 p. 241 . In this paper we give combinatorial proofs of these two identities and the ợ-binomial theorem by using conjugation of 2-modular diagrams. 1 Introduction We follow the notation and terminology in 7 and we always assume that 0 q 1. The q-shifted factorial is defined by n 1 a q o 1 a q n JỊ 1 - aqk n N a q ỊỊ 1 - aqk k 0 k 0 The following theorem is usually called the q-binomial theorem. It was found by Rothe and was rediscovered by Cauchy see 1 p. 5 . Theorem If z 1 then tt X a q n zn az q q q n z qK Various proofs are known. For simple proofs of see Andrews 3 Section and Gasper 6 and for combinatorial proofs see Alladi 2 and Pak 8 . The following two theorems are special cases of the transformations of 2Ộ1 series in Gasper and Rahman 7 p. 241 . THE ELECTRONIC JOURNAL OF COMBINATORICS 10 2003 R34 1 Theorem For a 1 and b 1 we have X az q n bn ho a q n 1 Theorem We have X q z q k z q n-kqmkzk k 0 q q k q q n-k q _ X bz q n n k b q n i XX q z q k z q m-kqnkzk k 0 q q k q q m-k q Clearly the left-hand side of may be written as 1 X 201 az q qa q b . 1 - a By the Heine s transformation in Gasper and Rahman 7 p. 241 is equal to 1 q abz q __1 2C1 a b abz q q 1 - a qa b q which is symmetric in a and b. Note that the special case z 0 of has also appeared in the literature see Stockhofe 9 and Pak 8 . Rewrite the left-hand side of as 7Z7q n 2h q-n q z q1-n z q qm 1 . q q n Applying the transformation in 7 p. 241 we get qmn 3Ộ2 .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.