Báo cáo toán học: "Operations on Well-Covered Graphs and the Roller-Coaster Conjecture"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: Operations on Well-Covered Graphs and the Roller-Coaster Conjecture. | Operations on Well-Covered Graphs and the Roller-Coaster Conjecture Philip Matchett Emmanuel College Cambridge CB2 3AP ENGLAND pmatchet@ Submitted Feb 29 2004 Accepted Jun 15 2004 Published Jul 1 2004 MR Subject Classifications 05C69 05C75 Abstract A graph G is well-covered if every maximal independent set has the same cardinality. Let sk denote the number of independent sets of cardinality k and define the independence polynomial of G to be S G z V skzk. This paper develops a new graph theoretic operation called power magnification that preserves well-coveredness and has the effect of multiplying an independence polynomial by zc where c is a positive integer. We will apply power magnification to the recent Roller-Coaster Conjecture of Michael and Traves proving in our main theorem that for sufficiently large independence number a it is possible to find well-covered graphs with the last .17 a terms of the independence sequence in any given linear order. Also we will give a simple proof of a result due to Alavi Malde Schwenk and Erdos on possible linear orderings of the independence sequence of not-necessarily well-covered graphs and we will prove the Roller-Coaster Conjecture in full for independence number a 11. Finally we will develop two new graph operations that preserve well-coveredness and have interesting effects on the independence polynomial. 1 Introduction Let G V E be a graph without loops or multiple edges. A set of vertices W c V is called independent if no two vertices in W are adjacent. The independence number of G is the cardinality of the largest independent set denoted a G or just a. The independence sequence of G is the list s0 S1 s2 . . . sa where si is the number of independent sets of cardinality i and the independence polynomial S G z is the generating function of the independence sequence thus S G z V SiZ i 0 THE ELECTRONIC JOURNAL OF COMBINATORICS 11 2004 R45 1 Note that the degree of S G z is a G . Also by convention we set So 1.

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.