Báo cáo toán học: "A note on graphs without short even cycles"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: A note on graphs without short even cycles. | A note on graphs without short even cycles Thomas Lam Jacques Verstraete t Submitted Apr 6 2004 Accepted Mar 25 2005 Published Apr 6 2005 Mathematics Subject Classifications 05C35 05C38 Abstract In this note we show that any n-vertex graph without even cycles of length at most 2k has at most 2n1 1 k O n edges and polarity graphs of generalized polygons show that this is asymptotically tight when k 2 2 3 5 . 1 Introduction In this note we study graphs without cycles of prescribed even lengths. For a finite or infinite set C of cycles define ex n C to be the maximum possible number of edges in an n-vertex graph which does not contain any of the cycles in C. The asymptotic behaviour of the function ex n C is particularly interesting when at least one of the cycles in C is of even length and was initiated by Erdos 5 . In general it is the lower bounds for ex n C - that is the construction of dense graphs without certain even cycles - which are hard to come by. The best known lower bounds are based on finite geometries such as polarity graphs of generalized polygons 9 and the algebraic constructions given by Lazebnik Ustimenko and Woldar 8 and Ramanujan graphs of Lubotsky Phillips and Sarnak 11 see also 10 . In the direction of upper bounds the first major result is known as the even circuit theorem due to Bondy and Simonovits 3 who proved that ex n C2k 100kn1 k. A more extensive study of ex n C was carried out by Erdos and Simonovits 6 . Our point of departure is the study of ex n C when C consists only of the even cycles of length at most 2k. The main result of this article is the following Theorem 1 Let k 2 be an integer. Then for all n ex n C4 C6 . C2k 2 n1 k 2k2 n. Furthermore when k 2 2 3 5 the n-vertex polarity graphs of generalized k 1 -gons in 9 have 1 n1 1 k O n edges and no even cycles of length at most 2k. Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA. E-mail thomasl@ Faculty of .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.