Burden - Numerical Analysis 5e (PWS, 1993) Episode 2 Part 9

Tham khảo tài liệu 'burden - numerical analysis 5e (pws, 1993) episode 2 part 9', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Discrete Least Squares Approximation 443 oc V7 . . and 0 7 2 y be bX e in die case of Eq. ỔỠ j I dE 44 or 0 pf 2 2 x- - bx x db j 1 7 t ĨĨĨ UJD __ and 0 7 22j y j x è lnx xỹ in the case of Eq. . ờữ i No exact solution to either of these systems can generally be found. The method that is commonly used when the data are suspected to be exponentially related is to consider the logarithm of the approximating equation In y In b ax in the case of Eq. and Iny In b ũlnx in the case of Eq. . In either case a linear problem now appears and solutions for In b and a can be obtained by appropriately modifying the normal equations and . However the approximation obtained in this manner is not the least squares approximation for the original problem and this approximation can in some cases differ significantly from the least squares approximation to the original problem. The application in Exercise 13 describes such a problem. This application will be reconsidered as Exercise 7 in Section where the exact solution to the exponential least squares problem is approximated by using methods suitable for solving nonlinear systems of equations. EXAMPLE 3 Table Consider the collection of data in the first three columns of Table . i X hiyf x winy. 1 2 3 4 5 If Xi is graphed with In y the data appear to have a linear relation so it is reasonable to assume an approximation of the form y be0 or In y In b ax. Extending the table and summing the appropriate columns give the remaining data in Table . Using the normal equations and 5 - _ a ----Á_ o--- - 2 444 CHAPTER 8 Approximation Theory - and In b _ _ -----z---------- . 5 - 2 Since e1122 the approximation assumes

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.