Computational Physics - M. Jensen Episode 1 Part 6

Tham khảo tài liệu 'computational physics - m. jensen episode 1 part 6', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | . ITERATION METHODS 89 Iteration methods To solve an equation of the type x 0 means mathematically to find all numbers s1 so that s 0. In all actual calculations we are always limited by a given precision when doing numerics. Through an iterative search of the solution the hope is that we can approach within a given tolerance 6 a value . V which is a solution to f s 0 if xo - s e and s 0. We could use other criteria as well like x s im -L e and xo e or a combination of these. However it is not given that the iterative process will converge and we would like to have some conditions on f which ensures a solution. This condition is provided by the so-called Lipschitz criterion. If the function f defined on the interval a b satisfies for all .r and . in the chosen interval the following condition . . with a constant then is continuous in the interval b . If f is continuous in the interval a b then the secant condition gives f xl -f x2 f xl-x2 with Xi X2 within a b and t within xi 2 . We have then 1 371 - 2 1 e kl - at2 The derivative can be used as the constant . We can now formulate the sufficient conditions for the convergence of the iterative search for solutions to f s 0. 1. We assume that is defined in the interval b . 2. f satisfies the Lipschitz condition with k 1. With these conditions the equation y 0 has only one solution in the interval a b and it coverges alien iterations towards the solution s irrespective of choice for 0 in the interval b . If we let be the value of X after iterations we have the condition g - xn ati - at2 . . . . . . The proof can be found in the text of Bulirsch and Stoer. Since it is difficult numerically to find exactly the point where s 0 in the actual numerical solution one implements three tests of the type 1In the following discussion the variable .s is reserved for the value of . where we have a solution. 90 CHAPTER 6. NON-LINEAR EQUATIONS AND ROOTS OF POLYNOMIALS 1. and K - 1 c 2. 3. and

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.