Báo cáo toán học: "Faster Algorithms for Frobenius Numbers"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Faster Algorithms for Frobenius Numbers. | Faster Algorithms for Frobenius Numbers Dale Beihoffer Lakeville Minnesota USA dbeihoffer@ Jemimah Hendry Madison Wisconsin USA jhendry@ Albert Nijenhuis Seattle Washington USA nijenhuis@ Stan Wagon Macalester College St. Paul Minnesota USA wagon@ Submitted Oct 10 2004 Accepted May 3 2005 Published Jun 14 2005 Mathematics Subject Classifications 05C85 11Y50 Abstract The Frobenius problem also known as the postage-stamp problem or the moneychanging problem is an integer programming problem that seeks nonnegative integer solutions to x1a1 xnan M where ai and M are positive integers. In particular the Frobenius number f A where A aig is the largest M so that this equation fails to have a solution. A simple way to compute this number is to transform the problem to a shortest-path problem in a directed weighted graph then Dijkstra s algorithm can be used. We show how one can use the additional symmetry properties of the graph in question to design algorithms that are very fast. For example on a standard desktop computer our methods can handle cases where n 10 and a1 107. We have two main new methods one based on breadth-first search and another that uses the number theory and combinatorial structure inherent in the problem to speed up the Dijkstra approach. For both methods we conjecture that the average-case complexity is O a1 pn . The previous best method is due to Bocker and Lipták and runs in time O a1n . These algorithms can also be used to solve auxiliary problems such as 1 find a solution to the main equation for a given value of M or 2 eliminate all redundant entries from a basis. We then show how the graph theory model leads to a new upper bound on f A that is significantly lower than existing upper bounds. We also present a conjecture supported by many computations that the expected value of f A is a small constant multiple of 1 n nA 1 ra 1 EA. THE ELECTRONIC JOURNAL OF COMBINATORICS 12 2005 R27 1 1. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
12    20    1    24-11-2024
15    15    4    24-11-2024
24    17    1    24-11-2024
187    24    1    24-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.