Báo cáo toán học: "Minimum Common String Partition Problem: Hardness and Approximations"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Minimum Common String Partition Problem: Hardness and Approximations. | Minimum Common String Partition Problem Hardness and Approximations Avraham Goldstein Department of Mathematics Stony Brook University Stony Brook NY . avUgoldstein@ Petr Kolman Department of Applied Mathematics Faculty of Mathematics and Physics Charles University Prague Czech Republic kolman@ Jie Zhengi Department of Computer Science University of California Riverside CA . zjie@ Submitted Aug 19 2004 Accepted Aug 28 2005 Published Sep 29 2005 Mathematics Subject Classifications 68W25 68Q25 Abstract String comparison is a fundamental problem in computer science with applications in areas such as computational biology text processing and compression. In this paper we address the minimum common string partition problem a string comparison problem with tight connection to the problem of sorting by reversals with duplicates a key problem in genome rearrangement. A partition of a string A is a sequence P Pl P2 . Pm of strings called the blocks whose concatenation is equal to A. Given a partition P of a string A and a partition Q of a string B we say that the pair P Qi is a common partition of A and B if Q is a permutation of P. The minimum common string partition problem MCSP is to find a common partition of two strings A and B with the minimum number of blocks. The restricted version of MCSP where each letter occurs at most k times in each input string is denoted by k-MCSP. In this paper we show that 2-MCSP and therefore MCSP is NP-hard and moreover even APX-hard. We describe a for 2-MCSP and a linear time 4-approximation algorithm for 3-MCSP. We are not aware of any better approximations. Preliminary version of this work was presented at the 15th International Symposium on Algorithms and Computation 9 . Research done while visiting University of California at Riverside. Partially supported by project 1M0021620808 of MSMT CR and NSF grants CCR-0208856 and ACI-0085910. 1 Supported by NSF grant .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.