Báo cáo toán học: "A note on three types of quasisymmetric functions"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: A note on three types of quasisymmetric functions. | A note on three types of quasisymmetric functions T. Kyle Petersen Department of Mathematics Brandeis University Waltham MA USA tkpeters@ Submitted Aug 8 2005 Accepted Nov 14 2005 Published Nov 22 2005 Mathematics Subject Classifications 05E99 16S34 Abstract In the context of generating functions for P-partitions we revisit three flavors of quasisymmetric functions Gessel s quasisymmetric functions Chow s type B quasisymmetric functions and Poirier s signed quasisymmetric functions. In each case we use the inner coproduct to give a combinatorial description counting pairs of permutations to the multiplication in Solomon s type A descent algebra Solomon s type B descent algebra and the Mantaci-Reutenauer algebra respectively. The presentation is brief and elementary our main results coming as consequences of P -partition theorems already in the literature. 1 Quasisymmetric functions and Solomon s descent algebra The ring of quasisymmetric functions is well-known see 12 ch. . Recall that a quasisymmetric function is a formal series Q xi X2 . G Z xi X2 . of bounded degree such that the coefficient of x 1 x x k is the same for all i1 2 k i2 ik and all compositions a a1 a2 . ak . Recall that a composition of n written a n is an ordered tuple of positive integers a a1 a2 . ak such that a a1 a2 ak n. In this case we say that a has k parts or a k. We can put a partial order on the set of all compositions of n by reverse rehnement. The covering relations are of the form oq . ai ơi 1 . ak p ai . ai ai i . ak . Let Qsymn denote the set of all quasisymmetric functions homogeneous of degree n. The ring of quasisymmetric functions can be dehned as Qsym ra 0 Qsymn but our focus will stay on the quasisymmetric functions of degree n rather than the ring as a whole. THE ELECTRONIC JOURNAL OF COMBINATORICS 12 2005 R61 1 The most obvious basis for Qsymn is the set of monomial quasisymmetric functions dehned for any composition a 1 a2 . ak 1 n Ma X Xi X2 i1 Ì2 --- ík .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.