Báo cáo toán học: "5-sparse Steiner Triple Systems of Order n Exist for Almost All Admissible n"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: 5-sparse Steiner Triple Systems of Order n Exist for Almost All Admissible n. | 5-sparse Steiner Triple Systems of Order n Exist for Almost All Admissible n Adam Wolfe Department of Mathematics The Ohio State University Columbus OH USA water@ Submitted Aug 5 2003 Accepted Nov 7 2005 Published Dec 5 2005 Mathematics Subject Classification 05B07 Abstract Steiner triple systems are known to exist for orders n 1 3 mod 6 the admissible orders. There are many known constructions for infinite classes of Steiner triple systems. However Steiner triple systems that lack prescribed configurations are harder to find. This paper gives a proof that the spectrum of orders of 5-sparse Steiner triple systems has arithmetic density 1 as compared to the admissible orders. 1 Background Let v 2 N and let V be a v-set. A Steiner triple system of order v abbreviated STS v is a collection B of 3-sets of V called blocks or triples such that every distinct pair of elements of V lies in exactly one triple of B. An STS v exists exactly when v 1 or 3 mod 6 the admissible orders. Wilson 13 showed that the number of non-isomorphic Steiner triple systems of order n is asymptotically at least e-5n n 6. Much less is known about the existence of Steiner triple systems that avoid certain configurations. An reconfiguration of a system is a set of r distinct triples whose union consists of no more than r 2 points. A Steiner triple system that lacks r-configurations is said to be r-sparse. In other words a Steiner triple system where the union of every r distinct triples has at least r 3 points is r -sparse. In 1976 Paul Erdos conjectured that for any r 1 there exists a constant Nr such that whenever v Nr and v is an admissible order an r-sparse STS v exists 4 . The statement is trivial for r 2 3. For r 4 there is only one type of 4-configuration a Pasch. Paschs have the form a b c a d e f b d f c e 1 Thanks to the editors of this journal for considering this for publication. THE ELECTRONIC JOURNAL OF COMBINATORICS 12 2005 R68 1 In this paper Paschs are written .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.