Báo cáo toán học: "Hard Squares with Negative Activity and Rhombus Tilings of the Plane"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Hard Squares with Negative Activity and Rhombus Tilings of the Plane. | Hard Squares with Negative Activity and Rhombus Tilings of the Plane Jakob Jonsson Department of Mathematics Massachusetts Institute of Technology Cambridge MA 02139 jakob@ Submitted Mar 24 2006 Accepted Jul 28 2006 Published Aug 7 2006 Mathematics Subject Classifications 05A15 05C69 52C20 Abstract Let Sm n be the graph on the vertex set Zm X Zn in which there is an edge between a b and c d if and only if either a b c d 1 or a b c 1 d modulo m n . We present a formula for the Euler characteristic of the simplicial complex of independent sets in Sm n. In particular we show that the unreduced Euler characteristic of ym n vanishes whenever m and n are coprime thereby settling a conjecture in statistical mechanics due to Fendley Schoutens and van Eerten. For general m and n we relate the Euler characteristic of ym n to certain periodic rhombus tilings of the plane. Using this correspondence we settle another conjecture due to Fendley et al. which states that all roots of det I Tm are roots of unity where Tm is a certain transfer matrix associated to ym n n 1 . In the language of statistical mechanics the reduced Euler characteristic of ym n coincides with minus the partition function of the corresponding hard square model with activity 1. 1 Introduction An independent set in a simple and loopless graph G is a subset of the vertex set of G with the property that no two vertices in the subset are adjacent. The family of independent sets in G forms a simplicial complex the independence complex E G of G. The purpose of this paper is to analyze the independence complex of square grids with periodic boundary conditions. Specifically define Sm n to be the graph with vertex set Zm X Zn and with an edge between a b and c d if and only if either a b c d 1 or a b c 1 d computations carried out modulo m n . Defining Lm n mZ X nZ Research supported by the European Graduate Program Combinatorics Geometry and Computation DFG-GRK 588 2. THE ELECTRONIC JOURNAL OF .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
272    23    1    28-11-2024
463    20    1    28-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.