Báo cáo toán học: "From well-quasi-ordered sets to better-quasi-ordered sets"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: From well-quasi-ordered sets to better-quasi-ordered sets. | From well-quasi-ordered sets to better-quasi-ordered sets Maurice Pouzet PCS Universite Claude-Bernard Lyonl Domaine de Gerland -bât. Recherche B 50 avenue Tony-Garnier F69365 Lyon cedex 07 France pouzet@ Norbert Sauer y Department of Mathematics and Statistics The University of Calgary Calgary T2N1N4 Alberta Canada nsauer@ Submitted Jul 17 2005 Accepted Oct 18 2006 Published Nov 6 2006 Mathematics Subject Classihcation 06A06 06A07 Abstract We consider conditions which force a well-quasi-ordered poset wqo to be better-quasi-ordered bqo . In particular we obtain that if a poset P is wqo and the set S P of strictly increasing sequences of elements of P is bqo under domination then P is bqo. As a consequence we get the same conclusion if S P is replaced by J P the collection of non-principal ideals of P or by AM P the collection of maximal antichains of P ordered by domination. It then follows that an interval order which is wqo is in fact bqo. Key words poset ideal antichain domination quasi-order interval-order barrier well-quasiordered set better-quasi-ordered set. Supported by Intas. Research done while the author visited the Math. Dept. of U of C in spring 2005 under a joint agreement between the two universities the support provided is gratefully acknowledged. y Supported by NSERC of Canada Grant 691325 THE ELECTRONIC JOURNAL OF COMBINATORICS 13 2006 R101 1 1 Introduction and presentation of the results How to read this paper Section 7 contains a collection of definitions notations and basic facts. The specialist reader should be able to read the paper with only occasional use of Section 7 to check up on some notation. Section 7 provides readers which are not very familiar with the topic of the paper with some background definitions and simple derivations from those definitions. Such readers will have to peruse Section 7 frequently. The paper is organized as follows. Section 2 provides the basics behind the notion of bqo posets .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
476    18    1    29-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.