Báo cáo toán học: "A Bound for Size Ramsey Numbers of Multi-partite Graphs"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: A Bound for Size Ramsey Numbers of Multi-partite Graphs. | A Bound for Size Ramsey Numbers of Multi-partite Graphs Yuqin Sun and Yusheng Li Department of Mathematics Tongji University Shanghai 200092 P. R. China xxteachersyq@ li_yusheng@ Submitted Sep 28 2006 Accepted Jun 8 2007 Published Jun 14 2007 Mathematics Subject Classification 05C55 Abstract It is shown that the diagonal size Ramsey numbers of complete m-partite graphs Km n can be bounded from below by cn22 m-1 ra where c is a positive constant. Key words Size Ramsey number Complete multi-partite graph 1 Introduction Let G G1 and G2 be simple graphs with at least two vertices and let G G1 G2 signify that in any edge-coloring of edge set E G of G in red and blue there is either a monochromatic red G1 or a monochromatic blue G2. With this notation the Ramsey number r G1 G2 can be defined as r G1 G min N Kn Ơ1 Ơ2 min V G I G G1 G2 . As the number of edges of a graph is often called the size of the graph Erdos Faudree Rousseau and Schelp 2 introduced an idea of measuring minimality with respect to size rather than order of the graphs G with G Gp G2 . Let e G be the number of edges of G. Then the size Ramsey number r G1 G2 is defined as r G1 G2 min e G G G1 G2 . Supported in part by National Natural Science Foundation of China. THE ELECTRONIC JOURNAL OF COMBINATORICS 14 2007 N11 1 As usual we write f G G as f G . Erdos and Rousseau in 3 showed r Kn n -1 n22n 1 60 Gorgol 4 gave f Km n cn22mn 2 2 where and henceforth Km n is a complete m-partite graph with n vertices in each part and c 0 is a constant. Bielak 1 gave f Kn n n cn n2 22n 3 where cn 413 as n 1. We shall generalize 1 and 3 by improving 2 as f Km n cn22 m-1 n where c cm 0 that has a positive limit as n 1. 2 Main results We need an upper bound for the number of subgraphs isomorphic to Km n in a graph of given size. The following counting lemma generalizes a result of Erdos and Rousseau 3 and we made a minor improvement for the case m 2. Lemma 1 Let n 2 be an integer. A graph with q edges

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.