Báo cáo toán học: "The number of 0-1-2 increasing trees as two different evaluations of the Tutte polynomial of a complete graph"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: The number of 0-1-2 increasing trees as two different evaluations of the Tutte polynomial of a complete graph. | The number of 0-1-2 increasing trees as two different evaluations of the Tutte polynomial of a complete graph C. Merino Institute de Matemáticas Universidad Nacional Autánoma de Máxico Circuito Exterior . Coyoacán 04510 Máxico . merino@ Submitted Nov 21 2007 Accepted Jul 11 2008 Published Jul 21 2008 Mathematics Subject Classifications 05A19 Abstract If Tn x y is the Tutte polynomial of the complete graph Kn we have the equality Tra 1 1 0 Tn 2 0 . This has an almost trivial proof with the right combinatorial interpretation of Tn 1 0 and Tn 2 0 . We present an algebraic proof of a result with the same flavour as the latter Tn 2 1 1 Tn 2 1 where Tn 1 1 has the combinatorial interpretation of being the number of 0-1-2 increasing trees on n vertices. 1 Introduction Given a graph G V E we define the rank function of G r P E Z as r A VI k A for A c E where k A is the number of connected components in the graph V A . The 2-variable graph polynomial T G X y known as the Tutte polynomial of G is defined as T G x y x - 1 r E -IA y - i IAI-r A 1 ACE The Tutte polynomial of G has many interesting combinatorial interpretations when evaluated on different points X y and along several algebraic curves. One that is particularly interesting is along the line x 1 which can be interpreted as the generating function of critical configuration of the sandpile model see 8 or as the generating function of the G-parking functions see 9 . When the graph G is the complete graph on n vertices Kn the latter is the classical generating function of parking functions or the inversion enumerator of labelled trees on n vertices see 10 . In the following section we prove the main theorem of the paper Supported by Conacyt of Mexico. THE ELECTRONIC JOURNAL OF COMBINATORICS 15 2008 N28 1 Theorem 1. T Kn 2 -1 T Kn 2-1 -1 . The last section shows how this result is related to the number of 0-1-2 increasing trees on n vertices. 2 T Kn 2 -1 and T Kn 2 1 -1 Let us assume that the vertices

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
187    26    1    29-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.