Báo cáo toán học: "A characterization of balanced episturmian sequences"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: A characterization of balanced episturmian sequences. | A characterization of balanced episturmian sequences Genevieve Paquin y Laurent Vuillonz Submitted Nov 21 2006 Accepted Apr 24 2007 Published May 9 2007 Mathematics Subject Classification 68R15 Abstract It is well-known that Sturmian sequences are the non ultimately periodic sequences that are balanced over a 2-letter alphabet. They are also characterized by their complexity they have exactly n 1 distinct factors of length n. A natural generalization of Sturmian sequences is the set of infinite episturmian sequences. These sequences are not necessarily balanced over a k-letter alphabet nor are they necessarily aperiodic. In this paper we characterize balanced epistur-mian sequences periodic or not and prove Fraenkel s conjecture for the special case of episturmian sequences. It appears that balanced episturmian sequences are all ultimately periodic and they can be classified in 3 families. 1 Introduction Sturmian sequences are exactly the non ultimately periodic balanced sequences over a 2-letter alphabet 6 18 . A sequence s is balanced if for every letter a the number of a s in any two n-length factors differs by at most 1 for any n. Sturmian sequences are also characterized by their number of n-length factors they always have n 1 factors of length n for every n. For Sturmian sequences the two conditions are equivalent. There are two different generalizations of Sturmian sequences for alphabets of cardinality k 3. A natural generalization of Sturmian sequences is the set of infinite episturmian sequences. It was first obtained by a construction due to de Luca 17 which uses the palindromic closure. The class of strict episturmian sequences over a 3-letter alphabet also appears in 19 and is studied in 3 . The set of episturmian sequences have been extensively studied by Droubay Justin and Pirillo 9 15 16 more recently. The second generalization of Sturmian sequences is the set of balanced sequences studied in 5 22 23 . with the support of NSERC Canada yLaboratoire .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.