Báo cáo toán học: "Distance domination and distance irredundance in graphs"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Distance domination and distance irredundance in graphs. | Distance domination and distance irredundance in graphs Adriana Hansberg Dirk Meierling and Lutz Volkmann Lehrstuhl II fur Mathematik RWTH Aachen University 52056 Aachen Germany e-mail hansberg meierling volkm @ Submitted Feb 13 2007 Accepted Apr 25 2007 Published May 9 2007 Mathematics Subject Classihcation 05C69 Abstract A set D c V of vertices is said to be a connected distance k-dominating set of G if the distance between each vertex u 2 V D and D is at most k and D induces a connected graph in G . The minimum cardinality of a connected distance k-dominating set in G is the connected distance k-domination number of G denoted by yk G yk G respectively . The set D is dehned to be a total k -dominating set of G if every vertex in V is within distance k from some vertex of D other than itself. The minimum cardinality among all total k-dominating sets of G is called the total k-domination number of G and is denoted by yk G . For x 2 X c V if Nk x - Nk X - x the vertex x is said to be k-irredundant in X. A set X containing only k-irredundant vertices is called k -irredundant. The k-irredundance number of G denoted by irk G is the minimum cardinality taken over all maximal k-irredundant sets of vertices of G. In this paper we establish lower bounds for the distance k-irredundance number of graphs and trees. More precisely we prove that Ạ 1 irk G yk G 2k for each connected graph G and 2k 1 irk T yk T 2k VI 2k - kni T for each tree T V E with n1 T leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann 9 and Cyman Lemanska and Raczek 2 regarding yk and the hrst generalizes a result of Favaron and Kratsch 4 regarding ir 1. Furthermore we shall show that yk G 3k 1 yk G 2k for each connected graph G thereby generalizing a result of Favaron and Kratsch 4 regarding k 1. Keywords domination irredundance distance domination number total domination number connected domination .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
272    26    1    04-12-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.