Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Osculating Paths and Oscillating Tableaux. | Osculating Paths and Oscillating Tableaux Roger E. Behrend School of Mathematics Cardiff University Cardiff CF24 4AG UK behrendr@ Submitted Apr 19 2007 Accepted Dec 18 2007 Published Jan 1 2008 Mathematics Subject Classification 05A15 Abstract The combinatorics of certain tuples of osculating lattice paths is studied and a relationship with oscillating tableaux is obtained. The paths being considered have fixed start and end points on respectively the lower and right boundaries of a rectangle in the square lattice each path can take only unit steps rightwards or upwards and two different paths within a tuple are permitted to share lattice points but not to cross or share lattice edges. Such path tuples correspond to configurations of the six-vertex model of statistical mechanics with appropriate boundary conditions and they include cases which correspond to alternating sign matrices. Of primary interest here are path tuples with a fixed number l of vacancies and osculations where vacancies or osculations are points of the rectangle through which respectively no or two paths pass. It is shown that there exist natural bijections which map each such path tuple P to a pair t where is an oscillating tableau of length l . a sequence of l 1 partitions starting with the empty partition in which the Young diagrams of successive partitions differ by a single square and t is a certain compatible sequence of l weakly increasing positive integers. Furthermore each vacancy or osculation of P corresponds to a partition in whose Young diagram is obtained from that of its predecessor by respectively the addition or deletion of a square. These bijections lead to enumeration formulae for tuples of osculating paths involving sums over oscillating tableaux. Keywords osculating lattice paths oscillating tableaux alternating sign matrices THE ELECTRONIC JOURNAL OF COMBINATORICS 15 2008 R7 1 1. Introduction The enumeration of nonintersecting lattice paths and of .