Báo cáo toán học: "Compact hyperbolic Coxeter n-polytopes with n + 3 facets"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Compact hyperbolic Coxeter n-polytopes with n + 3 facets. | Compact hyperbolic Coxeter n-polytopes with n 3 facets Pavel Tumarkin Independent University of Moscow B. Vlassievskii 11 119002 Moscow Russia pasha@ Submitted Apr 23 2007 Accepted Sep 30 2007 Published Oct 5 2007 Mathematics Subject Classifications 51M20 51F15 20F55 Abstract We use methods of combinatorics of polytopes together with geometrical and computational ones to obtain the complete list of compact hyperbolic Coxeter n-polytopes with n 3 facets 4 n 7. Combined with results of Esselmann this gives the classification of all compact hyperbolic Coxeter n-polytopes with n 3 facets n 4. Polytopes in dimensions 2 and 3 were classified by Poincaré and Andreev. 1 Introduction A polytope in the hyperbolic space Hn is called a Coxeter polytope if its dihedral angles are all integer submultiples of K. Any Coxeter polytope P is a fundamental domain of the discrete group generated by reflections in the facets of P. There is no complete classification of compact hyperbolic Coxeter polytopes. Vin-berg V1 proved there are no such polytopes in H n 30. Examples are known only for n 8 see B1 B2 . In dimensions 2 and 3 compact Coxeter polytopes were completely classified by Poincare P and Andreev A . Compact polytopes of the simplest combinatorial type the simplices were classified by Lannér L . Kaplinskaja K see also V2 listed simplicial prisms Esselmann E2 classified the remaining compact n-polytopes with n 2 facets. In the paper ImH Im Hof classified polytopes that can be described by Napier cycles. These polytopes have at most n 3 facets. Concerning polytopes with n 3 facets Esselmann proved the following theorem E1 Th. Partially supported by grants INTAS grant YSF-06-10000014-5916 and RFBR grant 07-01-00390-a THE ELECTRONIC JOURNAL OF COMBINATORICS 14 2007 R69 1 Let P be a compact hyperbolic Coxeter n-polytope bounded by n 3 facets. Then n 8 if n 8 then P is the polytope found by Bugaenko in B2 . This polytope has the following .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.