Báo cáo tin học: "On a covering problem for equilateral triangles"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: On a covering problem for equilateral triangles. | On a covering problem for equilateral triangles Adrian Dumitrescu Minghui Jiang y Department of Computer Science University of Wisconsin-Milwaukee Milwaukee WI 53201-0784 USA Email ad@ Department of Computer Science Utah State University Logan UT 84322-4205 USA Email mjiang@ Submitted July 22 2006 Accepted Feb 26 2008 Published Feb 29 2008 Mathematics Subject Classification 52C15 Abstract Let T be a unit equilateral triangle and Tt . Tn be n equilateral triangles that cover T and satisfy the following two conditions i Ti has side length ti 0 tị 1 ii Ti is placed with each side parallel to a side of T. We prove a conjecture of Zhang and Fan asserting that any covering that meets the above two conditions i and ii satisfies 52n t ti 2. We also show that this bound cannot be improved. 1 Introduction Inspired by an old problem of Erdos about packing smaller squares in a unit square 2 3 4 Zhang and Fan 7 have recently considered the following covering problem for the equilateral triangle. Let T be a unit equilateral triangle and T Tt . Tng be a set of n equilateral triangles that cover T and satisfy the following two conditions i Ti has side length ti 0 ti 1 ii T is placed with each side parallel to a side of T. All triangles are viewed as closed sets. An example of such a covering with 5 triangles is shown in Fig. 1 a . Define U n inf T covering T n n X ti. i t Since the triangles in the covering are smaller than T each triangle Ti can cover at most one vertex of T so the condition n 3 is necessary. Recently Zhang and Fan showed the following upper bounds on U n U n 3 n for even n 4 U n 4 nêã for odd Supported in part by NSF CAREER grant CCF-0444188. Supported in part by NSF grant DBI-0743670. THE ELECTRONIC JOURNAL OF COMBINATORICS 15 2008 R37 1 n 7. In particular U 4 2 follows. They also found that U 3 2 and U 5 9 4. It should be noted here that the inequality U k 2 for some k 3 does not imply for instance U k 1 2 so in particular having U 3 2 does

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.