Báo cáo toán học: "A refinement of the formula for k-ary trees and the Gould-Vandermonde’s convolution"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: A refinement of the formula for k-ary trees and the Gould-Vandermonde’s convolution. | A refinement of the formula for k-ary trees and the Gould-Vandermonde s convolution Ricky X. F. Chen Center for Combinatorics LPMC-TJKLC Nankai University Tianjin 300071 P. R. China ricky_chen@ Submitted Jul 10 2007 Accepted Mar 25 2007 Published Apr 3 2008 Mathematics Subject Classification 05A19 05C05 Abstract In this paper we present an involution on some kind of colored k-ary trees which provides a combinatorial proof of a combinatorial sum involving the generalized Catalan numbers Ck 7 n fcn 7 W . From the combinatorial sum we refine the formula for k-ary trees and obtain an implicit formula for the generating function of the generalized Catalan numbers which obviously implies a Vandermonde type convolution generalized by Gould. Furthermore we also obtain a combinatorial sum involving a vector generalization of the Catalan numbers by an extension of our involution. 1 Introduction Recently the author obtained the following identity involving the Catalan numbers Cn n V by accident which is similar to the identity 2 a in Riordan s book 6 p. 152-153 i 1 i 1 Ci ố0n for n 0 1 Ạ- n V i 0 X z where ỗ0n is the Kronecker symbol. It is well known 10 that Cn counts the number of 2-ary trees or complete binary trees with n internal vertices vertices with outdegree at least 1 . Now suppose the number of ordered forests with 7 h-ary trees and with total number of n internal vertices is C i7 n which is a natural generalization of the Catalan numbers. It is also well known 4 10 that i - 7 7 7 C n hn 7k n Then by generalizing the case Cn C2 1 n to C 7 n we obtain a generalization identity of 1 THE ELECTRONIC JOURNAL OF COMBINATORICS 15 2008 R52 1 Theorem . For n 0 a p 7 2 C n E -i - i 0 p 1 i a n i 7 pi 7 pi 7 i 2 Actually we can even generalize 2 by introducing following notations For any vectors a a1 . at and b b1 . bt we denote a b if ai bi for all 1 i t We also define b a b1 a1 . bt at and a b Pk 1 akbk As usual any dimension vector with constant .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.