Báo cáo toán học: "A quantified version of Bourgain’s sum-product estimate in Fp for subsets of incomparable sizes"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: A quantified version of Bourgain’s sum-product estimate in Fp for subsets of incomparable sizes. | A quantified version of Bourgain s sum-product estimate in Fp for subsets of incomparable sizes M. Z. Garaev Institute de Matemáticas Universidad Nacional Autánoma de Máxico Campus Morelia Apartado Postal 61-3 Xangari . 58089 Morelia Michoacán Máxico garaev@ Submitted Mar 4 2008 Accepted Apr 6 2008 Published Apr 18 2008 Mathematics Subject Classification 11B75 11T23 Abstract Let Fp be the field of residue classes modulo a prime number p. In this paper we prove that if A B c F then for any fixed 0 A A AB mm B A_ . 1 25_ A . This quantifies Bourgain s recent sum-product estimate. 1 Introduction Let Fp be the field of residue classes modulo a prime number p and let A be a non-empty subset of Fp. It is known from 4 5 that if A p1-5 where Ỗ 0 then one has the sum-product estimate A A AA A l 1 for some s ố 0. This estimate and its proof has been quantified and simplified in 3 6 11 . Improving upon our earlier estimate from 6 Katz and Shen 11 have shown that in the most nontrivial range 1 A p1 2 one has A A AA A 11 13 log A O 1 . A version of sum-product estimates with subsequent application to exponential sum bounds is given in 3 . In particular from 3 it follows that if 1 A p12 23 then A - A AA A 13 12 log A O 1 . THE ELECTRONIC JOURNAL OF COMBINATORICS 15 2008 R58 1 We also mention that in the case IAI p2 3 one has max A A AA g p1 2 A 1 2 which is optimal in general settings bound apart from the value of the implied constant for the details see 7 . Sum-product estimates in Fp for different subsets of incomparable sizes have been obtained by Bourgain 1 . More recently he has shown in 2 that if A B c Fp then A A AB imin B tAi0 A 2 A for some absolute positive constant c. In the present paper we prove the following explicit version of this result. Theorem 1. For any non-empty subsets A B c Fp and any 0 we have 1 25 A where the implied constant may depend only on . Remark. One can expect that appropriate adaptation of techniques of 3 and 11 may lead to .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.