Báo cáo toán học: "Graphs Associated with Codes of Covering Radius 1 and Minimum Distance 2"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Graphs Associated with Codes of Covering Radius 1 and Minimum Distance 2. | Graphs Associated with Codes of Covering Radius 1 and Minimum Distance 2 Joanne L. Hall School of Mathematical and Geospatial Sciences Royal Melbourne Institute of Technology Department of Mathematics Australian National University Submitted Dec 10 2007 Accepted Apr 23 2008 Published May 5 2008 Mathematics Subject Classifications 94B65 05C15 05B15 The search for codes of covering radius 1 led Ostergảrd Quistorff and Wasser-mann to the OQW method of associating a unique graph to each code 9 . We present results on the structure and existence of OQW-associated graphs. These are used to find an upper bound on the size of a ball of radius 1 around a code of length 3 and minimum distance 2. OQW-associated graphs and non-extendable partial Latin squares are used to catalogue codes of length 3 over 4 symbols with covering radius 1 and minimum distance 2. 1 Introduction The search for the minimum or maximum cardinality of an object with a set of properties is one of the classical problems in combinatorics. An n V d qR code C is a code of length n over q symbols with V codewords a minimum Hamming distance of d and covering radius of R. n V d q or n V qR are used if the covering radius or minimum distance are not specified. Let Kq n R be the minimum V such that an n V qR code exists and Aq n d be the maximum V such that an n V d q code exists. The problems of finding Kq n R and Aq n d are well studied. The Delsarte bound 4 and the Hamming bound 7 are some well know early results. For more recent studies see 2 8 . The study of codes with both specified covering radius and minimum distance is more recent and has mostly been studied using covering radius 1 and minimum distance 2 10 9 1 5 . n V 2 q 1 codes are also of interest as they are equivalent to non-extendable partial Latin hypercubes 5 . THE ELECTRONIC JOURNAL OF COMBINATORICS 15 2008 R68 1 a Figure 1 A graph which has no OQW-associated code. This article provides a summary and extension of the .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.