Báo cáo toán học: "Subsums of a Zero-sum Free Subset of an Abelian Group"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Subsums of a Zero-sum Free Subset of an Abelian Group. | Subsums of a Zero-sum Free Subset of an Abelian Group Weidong Gao1 Yuanlin Li2 Jiangtao Peng3 and Fang Sun4 1 3 4Center for Combinatorics LPMC Nankai University Tianjin . China 2Department of Mathematics Brock University St. Catharines Ontario Canada L2S 3A1 1gao@ 2yli@ 3pjt821111@ 4sunfang2005@ Submitted Mar 22 2008 Accepted Sep 2 2008 Published Sep 15 2008 Mathematics Subject Classification 11B Abstract Let G be an additive finite abelian group and S c G a subset. Let f S denote the number of nonzero group elements which can be expressed as a sum of a nonempty subset of S. It is proved that if S 6 and there are no subsets of S with sum zero then f S 19. Obviously this lower bound is best possible and thus this result gives a positive answer to an open problem proposed by . Eggleton and P. Erdos in 1972. As a consequence we prove that any zero-sum free sequence S over a cyclic group G of length S op8 contains some element with multiplicity at least . 1 Introduction and Main Results Let G be an additive abelian group and S c G a subset. We denote by f G S f S the number of nonzero group elements which can be expressed as a sum of a nonempty subset of S. For a positive integer k 2 N let F k denote the minimum of all f A T where the minimum is taken over all finite abelian groups A and all zero-sum free subsets T c A with TI k. This invariant F k was first studied by . Eggleton and P. Erdos in 1972 see 4 . For every k 2 N they obtained a subset S in a cyclic group G with S I k such F k f G S j 1 k 1 a detailed proof may be found in 8 Section and . Olson 10 proved that F k 1 . 9 THE ELECTRONIC JOURNAL OF COMBINATORICS 15 2008 R116 1 Moreover Eggleton and Erdos determined F k for all k 5 and they stated the following conjecture which holds true for k 5 Conjecture . For every k 2 N there is a cyclic group G and a zero-sum free subset S G G with SI k such that F k f G S . Eggleton and Erdos .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.