Báo cáo toán học: "More Constructions for Tur´n’s (3, 4)-Conjecture a"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: More Constructions for Tur´n’s (3, 4)-Conjecture a. | More Constructions for Turan s 3 4 -Conjecture Andrew Frohmader Department of Mathematics 581 Malott Hall Cornell University Ithaca NY 14853-4201 froh@ Submitted Jan 29 2008 Accepted Oct 24 2008 Published Nov 14 2008 Mathematics Subject Classification 05C65 Abstract For Turan s 3 4 -conjecture in the case of n 3k 1 vertices 26k-1 nonisomorphic hypergraphs are constructed that attain the conjecture. In the case of n 3k 2 vertices 6k-1 non-isomorphic hypergraphs are constructed that attain the conjecture. 1 Introduction Turán 8 posed the following problem about edges of hypergraphs. Suppose that an muniform hypergraph has exactly n vertices. Given r m if every possible subset of r vertices contains some m that do not form an edge how many edges can the hypergraph have as a function of n m and r Let tm n r be the greatest number of edges that the hypergraph can have. Turán 7 solved the case where m 2. The next simplest case is when m 3 and r 4. Turan had a conjecture for this case which we call Turán 3 4 -conjecture. Conjecture Let H be a 3-uniform hypergraph in which every set of four vertices contains at most three edges. Let the number of vertices of H be n. Then the number of edges of H is at most 8 2 k3 - 3k2 if n 3k 2k3 k2 21 k if n 3k 1 2k3 7k2 k if n 3k 2. If all possible sets of m vertices formed an edge there would be m edges. Hence tm n r m is the fraction of the potential edges. If a hypergraph on n 1 vertices attains tm n 1 r then removing one vertex and all edges containing it leaves a hypergraph THE ELECTRONIC JOURNAL OF COMBINATORICS 15 2008 R137 1 with n vertices and at most tm n r edges. Average over all the ways to remove a vertex and we get tm n 1 r tm n r n 1 Zn m m Much work has since been done on the following problem. Problem Fix r m. Let H be an m-uniform hypergraph on n vertices. Suppose further that every possible subset of r vertices contains some m that do not form an edge. Let tm n r denote the greatest number of .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.