Báo cáo toán học: "Jack deformations of Plancherel measures and traceless Gaussian random matrices"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Jack deformations of Plancherel measures and traceless Gaussian random matrices. | Jack deformations of Plancherel measures and traceless Gaussian random matrices Sho Matsumoto Graduate School of Mathematics Nagoya University Furocho Chikusa-ku Nagoya 464-8602 Japan sho-matsumoto@ Submitted Oct 30 2008 Accepted Nov 28 2008 Published Dec 9 2008 Mathematics Subject Classihcation primary 60C05 secondary 05E10 Abstract We study random partitions A Al A2 . Ad of n whose length is not bigger than a Hxed number d. Suppose a random partition A is distributed according to the Jack measure which is a deformation of the Plancherel measure with a positive parameter a 0. We prove that for all a 0 in the limit as n 1 the joint distribution of scaled A1 . Ad converges to the joint distribution of some random variables from a traceless Gaussian P-ensemble with p 2 a. We also give a short proof of Regev s asymptotic theorem for the sum of p-powers of fx the number of standard tableaux of shape A. Key words Plancherel measure Jack measure random matrix random partition RSK correspondence 1 Introduction A random partition is studied as a discrete analogue of eigenvalues of a random matrix. The most natural and studied random partition is a partition distributed according to the Plancherel measure for the symmetric group. The Plancherel measure chooses a partition A of n with probability f A 2 A f-f- n where fx is the degree of the irreducible representation of the symmetric group n associated with A. A random partition A A1 A2 . chosen by the Plancherel measure is closely related to the Gaussian unitary ensemble GUE of random matrix theory. JSPS Research Fellow. THE ELECTRONIC JOURNAL OF COMBINATORICS 15 2008 R149 1 The GUE matrix is a Hermitian matrix whose entries are independently distributed according to the normal distribution. The probability density function for the eigenvalues X1 xd of the d X d GUE matrix is proportional to e-2 U - x2d n Xj - Xj 1 i j d with p 2. In BOO J3 O1 see also BDJ it is proved that as n 1 the joint .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
12    25    1    28-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.