Báo cáo toán học: "Cayley graphs on the symmetric group generated by initial reversals have unit spectral gap"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Cayley graphs on the symmetric group generated by initial reversals have unit spectral gap. | Cayley graphs on the symmetric group generated by initial reversals have unit spectral gap Filippo Cesi Dipartimento di Fisica Universita di Roma La Sapienza Italy and SMC INFM-CNR. Submitted Apr 11 2009 Accepted Oct 1 2009 Published Oct 12 2009 Mathematics Subject Classification 05C25 05C50 Abstract In a recent paper Gunnells Scott and Walden have determined the complete spectrum of the Schreier graph on the symmetric group corresponding to the Young subgroup Sn 2 X S2 and generated by initial reversals. In particular they find that the first nonzero eigenvalue or spectral gap of the Laplacian is always 1 and report that empirical evidence suggests that this also holds for the corresponding Cayley graph. We provide a simple proof of this last assertion based on the decomposition of the Laplacian of Cayley graphs into a direct sum of irreducible representation matrices of the symmetric group. 1 Introduction If G is a finite group H is a subgroup of G and Z is a generating set of G we can construct the Schreier graph G X G H Z whose vertices are the left-cosets G H and whose edges are the pairs gH zgH with gH G G H and z G Z. We assume that the generating set Z is symmetric . z G Z if and only if z 1 G Z. In this case the graph X G H Z is undirected. If H 1 we denote with X G Z X G 1 Z the Cayley graph of G associated to the generating set Z. If Ag is the adjacency matrix of G and Ag the corresponding Laplacian since G is Z -regular counting loops we have Ag Z I - Ag where Z stands for the cardinality of the set Z. The Laplacian is symmetric and positive-semidefinite hence its eigenvalues are real and nonnegative and can be ordered as 0 A1 AG c A2 Ag c c An Ag THE ELECTRONIC JOURNAL OF COMBINATORICS 16 2009 N29 1 Since Z generates G the graph G is connected which implies that 0 is a simple eigenvalue with constant eigenvector while A2 Aợ is strictly positive. The second eigenvalue of the Laplacian is also called the spectral gap of the

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.