Báo cáo toán học: "Bipartite Coverings and the Chromatic Number"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Bipartite Coverings and the Chromatic Number. | Bipartite Coverings and the Chromatic Number Dhruv Mubayi Department of Mathematics Statistics and Computer Science University of Illinois Chicago IL 60607 USA mubayi@ Sundar Vishwanathan Department of Computer Science Indian Institute of Technology Mumbai India 400076 sundar@ Submitted Feb 14 2009 Accepted Nov 17 2009 Published Nov 30 2009 Abstract Consider a graph G with chromatic number k and a collection of complete bipartite graphs or bicliques that cover the edges of G. We prove the following two results If the bipartite graphs form a partition of the edges of G then their number is at least 2log2 k. This is the first improvement of the easy lower bound of log2 k while the Alon-Saks-Seymour conjecture states that this can be improved to k 1. The sum of the orders of the bipartite graphs in the cover is at least 1 o 1 k log2 k. This generalizes in asymptotic form a result of Katona and Sze-meredi who proved that the minimum is k log2 k when G is a clique. 1 Introduction It is a well-known fact that the minimum number of bipartite graphs needed to cover the edges of a graph G is flog x G l where x G is the chromatic number of G all logs are to the base 2 . Two classical theorems study related questions. One is the Graham-Pollak theorem 1 which states that the minimum number of complete bipartite graphs needed to partition E Kk is k 1. Another is the Katona-Szemeredi theorem 4 which states that the minimum of the sum of the orders of a collection of complete bipartite graphs that cover E Kk is k log k. Both of these results are best possible. An obvious way to generalize these theorems is to ask whether the same results hold for any G with chromatic number k . Conjecture 1 Alon - Saks - Seymour The minimum number of complete bipartite graphs needed to partition the edge set of a graph G with chromatic number k is k 1. Note that every graph has a partition of this size simply by taking a proper coloring V1 . Vk and letting the ith .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.