Báo cáo toán học: "Enumeration of derangements with descents in prescribed positions"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Enumeration of derangements with descents in prescribed positions. | Enumeration of derangements with descents in prescribed positions Niklas Eriksen Ragnar Freij Johan Wastlund Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg S-412 96 Goteborg Sweden ner@ wastlund@ Submitted Nov 6 2008 Accepted Feb 25 2009 Published Mar 4 2009 Mathematics Subject Classification Primary 05A05 05A15. Abstract We enumerate derangements with descents in prescribed positions. A generating function was given by Guo-Niu Han and Guoce Xin in 2007. We give a combinatorial proof of this result and derive several explicit formulas. To this end we consider fixed point A-coloured permutations which are easily enumerated. Several formulae regarding these numbers are given as well as a generalisation of Euler s difference tables. We also prove that except in a trivial special case if a permutation n is chosen uniformly among all permutations on n elements the events that n has descents in a set S of positions and that n is a derangement are positively correlated. In a permutation n G Sn a descent is a position i such that ni ni 1 and an ascent is a position where ni ni 1. A fixed point is a position i where ni i. If ni i then i is called an excedance while if ni i i is a deficiency. Richard Stanley 10 conjectured that permutations in S2n with descents at and only at odd positions commonly known as alternating permutations and n fixed points are equinumerous with permutations in n without fixed points commonly known as derangements. The conjecture was given a bijective proof by Chapman and Williams in 2007 1 . The solution is quite straightforward If n G 2n is an alternating permutation and F c 2n is the set of fixed points with F n then removing the fixed points gives a permutation T in S 2n F without fixed points and n can be easily reconstructed from T. For instance removing the fixed points in n 326451 gives T 361 or T 231 if we reduce it to S3. To recover n we .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.