Báo cáo toán học: "Face vectors of two-dimensional Buchsbaum complexes"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Face vectors of two-dimensional Buchsbaum complexes. | Face vectors of two-dimensional Buchsbaum complexes Satoshi Murai Department of Mathematics Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan murai@ Submitted Dec 3 2008 Accepted May 21 2009 Published May 29 2009 Mathematics Subject Classifications 13F55 Abstract In this paper we characterize all possible h-vectors of 2-dimensional Buchsbaum simplicial complexes. 1 Introduction Given a class C of simplicial complexes to characterize the face vectors of simplicial complexes in C is one of central problems in combinatorics. In this paper we study face vectors of 2-dimensional Buchsbaum simplicial complexes. We recall the basics of simplicial complexes. A simplicial complex A on n 1 2 . n is a collection of subsets of n satisfying that i i G A for all i G n and ii if F G A and G c F then G G A. An element F of A is called a face of A and maximal faces of A under inclusion are called facets of A. A simplicial complex is said to be pure if all its facets have the same cardinality. Let fk A be the number of faces F G A with F k 1 where F is the cardinality of F. The dimension of A is dimA max k fk A 0 . The vector f A f_i A fo A . fd-1 A is called the f-vector or face vector of A where d dimA 1 and where f_1 A 1. When we study face vectors of simplicial complexes it is sometimes convenient to consider h-vectors. Recall that the h-vector h A ho A h1 A . hd A of A is defined by the relation Xd 0 fi_1 A x 1 d-i Xd 0 hi A xd-i. Thus knowing f A is equivalent to knowing h A . Let H A K be the reduced homology groups of A over a field K. The numbers hi A dimK Hi A K are called the Betti numbers of A over K . The link of A with respect to F G A is the simplicial complex lkA F G c n F G u F G A . In the study of face vectors of simplicial complexes one of important classes of sim-plicial complexes are Cohen-Macaulay complexes which come from commutative algebra theory. A d 1 -dimensional simplicial complex A is said to be Cohen-Macaulay

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.